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Exact Monte Carlo for Few-Fermion Systems 

M. H. Kalos 1 

We have reconsidered the fundamental difficulties of fermion Monte Carlo as 
applied to few-body systems. We conclude that necessary ingredients of success- 
ful algorithms include the following: There must be equal populations of ran- 
dom walkers that carry positive and negative weights. The positions of positive 
walkers should be selected from a distribution that uses Green's functions to 
couple all walkers. The positions of negative walkers should be generated from 
those of positive walkers by means of odd permutations. The correct importance 
functions that take into account the global interactions of the populations are 
different for positive and negative walkers. Use of such importance functions 
breaks the symmetry that otherwise would exist between configurations (of the 
entire population) and configurations derived by interchanging positive and 
negative walkers. Based upon these observations, we have constructed a stable 
and accurate algorithm that solves a fully-polarized, three-dimensional, 
three-body model problem. 
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1. I N T R O D U C T I O N  

By now, the "sign problem" that  arises in the Monte  Carlo integrat ion of 
the Schr6dinger  equa t ion  for fermion systems is well know n  to those who 
know it well. (1) Briefly, the requirement  of an t i symmetry  of particles with 
like spins requires that  the wavefunct ion be negative as often as positive. It 

is straightforward to represent the wavefunction by a popula t ion  of ran- 
dom walkers that carry signs, but  the usual a lgor i thm--each  walker moves 
independent  o f t he  o thers- -causes  each popula t ion  to converge to the same 
limit, a symmetrical  one. Having a popula t ion  of positive walkers and  a 
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separate population of negative walkers with the same asymptotic distribu- 
tion implies zero overlap with any test function, symmetric or antisym- 
metric. This difficulty is not merely technical. Clearly, the requirement that 
wavefunctions be antisymmetric is a global property, one that cannot be 
satisfied by an ensemble of independent walkers. There is another way to 
put the difficulty: The simple algorithms have the property that positive 
and negative walkers can be exchanged with impunity. This (higher) 
symmetry again leads us to the conclusion that the asymptotic overlap 
with any test function is zero. 

This paper provides a summary of the technical issues, followed by a 
proposal for a solution. There are two key ingredients for this new 
approach. The first is the use of an ensemble of interacting walkers. By 
itself, however, such an ensemble and the algorithms that sample new 
states of the ensemble do not break the symmetry between positive and 
negative walkers. The second key idea follows from a critical reevaluation 
of the meaning of the importance function in such ensembles. It turns out 
that the importance function is no longer the wavefunction itself (except in 
the limit of infinite population). Instead, positive and negative walkers have 
different (but related) importance functions. It is this difference that breaks 
the symmetry and permits, in principle, an exact, asymptotically stable 
method. 

We sketch a model problem based on Gaussian kernels. A numerical 
solution of a fully polarized, three-dimensional, three-body system in this 
model is described. 

2. T E C H N I C A L  B A C K G R O U N D  

Consider the Schr6dinger equation for a system of N particles rl, 
r2,..., rN which we denote as R. They interact with a potential V(R) which 
is usually (but not necessarily) a sum of one-body and two-body terms. In 
appropriate units, the Schr6dinger equation is 

I - -  ~/V 2 + V(R)] ~gk(R ) = [--V2R + V(R)] 0k(R) = EkOk(R) 

Shift the energy scale by Vo such that 

Vo + Eo>~O 

Then the Green's function for [ - V 2 +  V(R)+ Vo], namely the solution of 

[ - v ~  + V(R) + Vo] G(R, Ro) = ~ ( R -  Ro) 
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is nonnegative and integrable. G may be used to rewrite the Schr6dinger 
equation as an integral equation 

O~(R) = Ek f G(R, R') ~k(R') dR' 

The iteration of this equation may be accomplished by sampling G(R1, Ro) 
as a stochastic kernel for R1 conditional on Ro, then G(Rz, RI) for R 2 con- 
ditional on R1, and so on. The limiting distribution for Rn is ~o(Rn). When 
V(R) is symmetric in the coordinates of all particles, ~o is also symmetric. 

Sampling G(RI, R') can be carried out in many ways. There is an 
exact sampling method (z) that relies on first passage across surfaces within 
configuration space plus upper bounds to V(R) within the subdomains. A 
variety of other methods (3) use numerical approximations to Brownian 
motion to approximate G(R, R'). From the point of view of finding 
antisymmetric solutions, there is not much to choose among them. 

2.1. I m p o r t a n c e  S a m p l i n g  

A change that has substantial value in reducing the fluctuations in the 
random walks arises from the use of an importance sampling transforma- 
tion. Consider the integral equation 

t~o(R ) = E o f G(R, R') ~o(R') dR' 

and multiply through by a function ~r(R) .  Inside the integral multiply and 
divide by ~r (R ' ) .  The result is an integral equation of the same structure, 

~ ( R )  ~o(R)= Eo f [q,~(R) 6(R, R')/r ~(R')  0o(R') dR' 

With 

we get 

~(R) = ~ ( R )  0o(R) 

G(R) = [-~T(R) G(R, R')/~v(R')] 

~(R) = Eo f ~(R, R') ~(R') dR' 

The variance reducing properties follow from the fact that if 

~T(R) = ~o(R) 
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then 

E~ f G(R, R') dR = 1 for every R' 

and that when 0 r  is close to 0o the latter normalization is close to one. 
Sampling G can be carried out in the domain or in the Brownian (i.e., 
diffusion) style. 

For later purposes, it is useful for us to reconstruct the motivation for 
this transformation. It is one of a class of transformations in Monte Carlo 
methods that have the same structure: one seeks to alter the sampling so 
that the random points have a new density which is the original multiplied 
by the "value" or "importance" of the point. Since we are dealing with a 
homogeneous equation and seek asymptotic distributions, the importance 
of a walker at R' is the overlap with a test function 0 r ( R )  of the 
asymptotic distribution that arises from a walker at R'. That is, let 

rh(R; R')=Eo G(R, R") 6(R"--R') dR" 

q~+ I(R; R') = Eo G(R, R") r/l(R"; R') dR" 

The importance i(R') is calculated as 

i(R') = lim f Or(R) .,(R; R') dR 

It is easily seen that 

i(R') oc Oo(R') 

When we repeat this calculation for interacting ensembles of positive and 
negative walkers, we will find a different result. 

2.2. Approaches to Fermion Calculations 

2.2.1. Fixed Node Approximation. Anderson (4) was the first to 
treat interacting electrons by introducing an artificial boundary condition, 
namely that the solution must vanish at the nodes of an antisymmetric trial 
function 0T(R). Since the correct nodes are in general unknown, and since 
the solution with this boundary condition on the opposite sides does not, 
in general, have continuous derivatives, the method is necessarily 
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approximate. It can, however, be very accurate, attaining chemical 
accuracy for few-electron systems. Unfortunately, it has proved difficult to 
improve systematically. 

2.2.2. Trans ien t  Projec t ion .  If one iterates the Schr6dinger 
equation in integral form (or alternatively simulates a diffusive process) 
from an initial guess that has an antisymmetric component, then the 
asymptotic antisymmetric component is exact. That is, let 

zl(R) = ~A~(R) + ~sT(R)  

include antisymmetric and symmetric test functions, respectively. 
Let 

Z,+ 1(R) = E* f G(R, R') z , (R ' )  dR' 

Then the fermion energy is exactly 

EF = l im ~ zz(R) HOAr(R) dR 
z t (R)  ~9Ar(R) dR 

Unfortunately, for the reasons mentioned in the Introduction, the Monte 
Carlo estimates of the integrals that appear in numerator and denominator 
are asymptotically zero. More precisely, the signal-to-noise ratio decreases 
geometrically with l. 

With a very good choice of @AT, the estimates of E v can be 
approximately constant yielding good results for the energy. 

2.2.3. Cor re la t ed  Walks.  In 1982, David Arnow and his 
collaborators (5) introduced the idea of correlating pairs of walkers of 
opposite sign so as to achieve some degree of cancellation in their 
descendants and thereby avoid or delay the convergence to the ground 
state. They used populations of positive and negative walkers, {R + } and 
{Rj  }, respectively. Then the Monte Carlo representation of the distribu- 
tion at any stage is 

and 

):,(R) = ~ [6(R - R~- ) - c~(R - R f  )] 
J 

Z,+ I(R) = E* f G(R, R') z t (R')  dR' 
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When the R + and R -  are paired to enhance the overlap of G(R, R ~ ) and 
.1 

G(R, R j )  we may consider 

G(R, RJ)-G(R, Rj ) 

as a composite propagator. Where this is positive, )~t++l(R) is sampled; 
negative values sample )~/+1(R). In the next section we will generalize the 
idea to correlate all walkers of both signs. Note, however, that the method 
so far does not break the plus/minus symmetry. 

3. A M O D E L  P R O B L E M  

We will now introduce some integral identities that yield random 
walks like those that occur in Green's function Monte Carlo (GFMC). (2) 
These will permit simple analysis and intuitive understanding of that 
technique. 

These integral equations have the form 

~o(y) = Eo f a(y, z) W(z) ~(z) dz 

where G(y, z) is a stochastic kernel such that 

a(y, z)= a(z, y) 

G(y, z) >~ 0 for all y, z 

f G(y, z) dy = every z 1 for 

and 

W(z ) >>. 0 

A random walk that is described by this equation is as follows. A walker 
at z becomes N walkers (N~> 0) with the expected value of N satisfying 

{N} = Eo W(z) 

A simple implementation is 

N = LEo W(z) + CA 

where r is a uniformly distributed random number on [0, 1]. 
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We know introduce an importance function transformation. Let us use 
the eigenfunctions of our model equation: 

~Ok(y) = Ek f G(y, z) W(z) ~Ok(Z) dz 

These are not orthogonal in the usual sense. It is easy to see, however, that 
the following generalization of the orthogonality relation holds: 

f q~k(Y) W(y) r dy=O 

Therefore, the functions [ W ( y ) ]  1/2 (Pk(Y) 
function v(y) may be expanded as 

if El 4: Ek 

are orthogonal. An arbitrary 

we have 

if 

Writing G(y, z) in terms of the functions of this complete set of eigen- 
functions, we have 

As Co is given by 

(Eo) E o f G(y, z) v(z) dz = • c, -~l [ W(y)]  1/2 q~,(y) 
1 

If one iterates many times, 

E~ f G(y, zn) f G(zn, zn+l)...f G(z2, z1)v(z1)dz1...dz n 

E ~, Eo " W(y)] ~,(y) = (E,) 1- ~/~ 
co[W(Y)] 1/2 q)o(Y) 

Co = f [ w(z)] '/= ~0o(Z) ~(z) d~ 

v(z) = ~(z - yo) 

Co = [W(yo)] ~/2 q~o(Yo) 

v(y) = ~ c z [ W(y)]  1/2 q)l(Y) 
l 



1276 Kalos 

Thus, the asymptotic population at y resulting from a walker that starts at 
Yo is proportional to W(yo)Cpo(Yo). This is then the importance function. 
To use it, we multiply our integral equation through by W(y)~Oo(y ) and 
multiply and divide the integrand on the right by ~Oo(Z ) to obtain 

with 

and 

~Oo(y) w(y) ~o(y) = Eo f [ w(y) ~oo(y) 6(y, z)/~Oo(Z) ] q,o(Z) W(z) ~o(z) dz 

~o(y) = Eo f w(y) ~(y, z) O(z) 

~(y )=  r W(y) ~(y) 

~(y, z) = ~oo(y) G(y, z)/~Oo(Z) 

If we put our model equation in this form, we get 

exp[--(l+fl)Y2]=f[ (1+2fl)211/24-~ J exp[k . - ( l+2f l )2(  y 4 f l  

x exp [ - (1  +f l )z  2] dz 

with 

and 

I.(1 + 2fl)2] /2 - (1  +2fl) 2 ( y _ _ _  
4rcfl J exp I 4fl 

Z 2 

f G(y, z) dz = 1 for all y, z 

so that N =  1 identically and there is no multiplication (or termination) of 
the walkers. This circumstance, in which the population size has no 
variance, is clearly a more efficient random walk realization of the problem. 

Also note that (~ is not centered at z: 

oc e -2(y-z/z)2 for fi= 1/2 

The walker is shifted to z/2 and the distribution is more narrow. 

Z 2 

exp[ - ( ~  + fi)y2] = @(y) 

The transition kernel here satisfies 
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This G was built using a knowledge of the exact eigenfunction. In 
practice we use an approximate trial function for (Po, which reduces the 
fluctuations of the random walkers. 

We can summarize our results for the model integral equation: 

uo(y) = e -1'2/2, Eo = 1 

o~ 1 
u o ( y ) = f  ~ e  (y z?,~/2e z2/2Uo(Z) dz 

e-Z2~2 _ W(z) ,  plays role of potential 

1 e_(y_z)2 f~e_Z2/2uk(z)d  z 
u k ( y ) =  Ek f_o - - ~  

~+(y) - W(y) Uo(y) u~(y) 

~k(Y) = Ek _ ~ e 2(~- ~/2)~k(z ) & 

U l ( Y  ) = ye -y2/2, E 1 = 2 

3.1. Ensembles of Interacting Walkers 

The generalization of the method of Arnow et al. to this model 
problem and to the fully interacting ensembles is straightforward. We will 
seek to sample new points y + from the composite density 

[8(y, ~? ) - ~(y; z?)] 
l 

We assume here that there are equal numbers of positive and negative 
walkers, a correct relation for ground states of fermion systems. Techni- 
cally, we use a rejection method; that is, new points are sampled from a 
probability density proportional to 

y~ [8(y, ~,+ ) + ~(y, ~? )] 
l 

When the ratio 

Z [a(y, ~+)-  G(y, z?)] 
Z [C(y ,z?)+C(y ,z?)]  

~<1 

is positive, then y is accepted as a positive point y+. Negative points y -  
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are obtained by cycling through odd permutations of the particles and 
applying one to each y + 

It is fruitful to think of the ensemble of walkers as constituting a pair 
of droplets of two kinds of atoms living in 3N-dimensional space. For long- 
term stability these droplets, of positive and negative walkers, respectively, 
should be immiscible. The use of the full sum of Green's functions provides 
the analog of a pair potential, attractive between like atoms, repulsive 
between unlike atoms, that provides for the necessary stability. But the 
symmetry of positive and negative walkers remains. Thus, for any con- 
figuration of the droplets, another, with positive and negative walkers 
interchanged, is equally likely in the long-term solution of the system. We 
need a one-body potential that acts differently on positive and negative 
walkers to break the symmetry and to fully stabilize the system. As 
indicated above, the importance function provides the analog of a 
one-body force. 

3.2. Importance Sampling Revisited 

The developments of Section 2.1 apply here with two modifications. 
The first is that the test function 0(R) used there must be some antisym- 
metric function OAT(Y). Second, the evolution of all walkers is coupled: a 
high density of negative walkers inhibits a positive walker from being selec- 
ted in some neighborhood. Thus, any negative walker has an asymptotic 
distribution like the distribution of the other negative walkers, one which 
avoids the neighborhoods where positive walkers are dense. Taking into 
account the sign of the walkers, this asymptotic distribution has a positive 
overlap with 0At(Y); the asymptotic distribution of positive walkers is 
mapped by the use of any odd permutation and has exactly the same over- 
lap with 0at(Y)- Thus, the importance functions are both positive. Their 
behavior as a function of y cannot be written down in closed form; it 
depends on the details of the algorithm, including the size of the popula- 
tions. However, their qualitative behavior is clear: i+(y), the importance 
for positive walkers, resembles the solution 0(Y), or, one hopes, 0At(Y), 
where they are positive and not too close to their nodal surfaces. 

Where OAT(Y) is negative, i+(y) falls off rapidly, reflecting the 
increasing density of negative walkers. A form such as 

i+(y) = f G(y, z) max[0av(z), 0] dz 

might plausibly be used with a similar ansatz for i-(y). The form used in 
our test problem will be described below. 
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3.3. A Numerical Experiment 

Several programs were written and run in the course of developing 
these ideas and in exploring their consequences. We describe here some of 
the characteristics of the last, the one that most completely embodies the 
characteristics described above. 

We attempted to sample populations of positive and negative walkers 
each having a stable overlap with the solution of the model equation for a 
system of three particles, each in three dimensions, and all polarized in the 
same direction. For  the direction chosen, that is, 

ii113 ( ) O ( R ) =  Yl Y2 exp - -  R 2 Y3 

Z2 

A fairly poor trial function was chosen as follows: 

Cpo(X ) = e x p [ -  (x + x,) 2] + e x p [ -  (x - Xs) 2] 

q~l(x) = e x p [ -  (x + Xs) 2] - e x p [ -  (x - x,) 2] 

We build up orbitals as products 

qS ij~(r ) = qo , (x)  (pj(y) (pk(Z) 

and use as trial or test function 

~ooo(rl) qOooo(r2) ~Pooo(r3) 
(]DOlO(rl) (POlO(r2) qSolo(r3) 
~ool(rl) ~bool(r2) ~boo,(r3) 

The only parameter  is xs, which can be varied to minimize the eigenvalue. 
The value x s = 0.625 yields 2~ = 4.28. The use of a crude trial function was 
deliberate: we did not want a spurious convergence or stability to derive 
from a special choice of 0AT. The importance function is derived from the 
trial function by means of an intermediate "mapping" function/l(s),  which 
was chosen as 

u(s) = �89 (s 2 + ~2),/2] 

so that 

i -+ (R) = exp{ ---+fl#[0Ar(R)] } 
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The parameters e and /~ can be adjusted to minimize the population fluc- 
tuations, but after a quick verification that the computation was insensitive 
to them, intermediate plausible values of e = 0.4,/3 = 0.4 were used. 

Separate calculations were run with populations of each kind of 
walker sets at 50, 100, and 200 in turn. There was no evidence of 
"instability" or decay of signal-to-noise ratio. In fact, the smaller popula- 
tion system was iterated 2 x 10  4 times. If one notes that the ratio of eigen- 
values is 4, and that the state singled out for solution is degenerate and a 
second excited state, it is clear that without stabilization by the importance 
functions, noise would have dominated within a few iterations. 

The computed eigenvalue was observed to be very nearly a linear 
function of L -1, where L is the fixed population size. Extrapolated to 
L - l =  0, the eigenvalue is 

2 = 3.9975 _+ 0.0024 

in satisfactory agreement with the correct value of 4. 

4. C O N C L U S I O N  

The techniques outlined above for stabilization and projection of an 
antisymmetric excited state appear, on the basis of a simple but exigent 
model calculation, to work. The methods have been adapted to calculate 
properties of few-electron systems, and tests of this new algorithm are now 
underway. 
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